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Abstract. We calculate diffractive photo- and leptoproduction of ρ-, ρ′- and ρ′′-mesons. The incoming
photon dissociates into a qq̄-dipole which scatters on the nucleon and transforms into a vector meson state.
The scattering amplitude is calculated in non-perturbative QCD with the model of the stochastic vacuum.
Assuming that the physical ρ′- and ρ′′-mesons are mixed states of an active 2S-excitation and some residual
hybrid state which cannot be produced diffractively in lowest order QCD, we obtain good agreement with
the data, especially the markedly different spectrum in the π+π−-invariant mass for photoproduction and
e+e−-annihilation.

1 Introduction

Exclusive vector meson production by real and virtual
photons is an efficient probe to investigate the physics
of diffractive scattering. The experimental situation in
π+π−- and 2π+2π−-production in the mass range from
1–2 GeV is rather complex. Photoproduction data show
one broad bump in the π+π−-mass distribution [1] on
the upper tail of the ρ at around 1.6 GeV. The same en-
hancement is visible in 2π+2π−-production [2]. In e+e−-
annihilation [3–5] a distinct interference pattern is seen.
Evidence for two resonances has been established in Refs
[6,7]. Both resonances couple with approximately equal
strength to the electromagnetic current. Their masses are
compatible with those of the 1−− states ρ(1450) and
ρ(1700), respectively.

In [8] good agreement with experimental data for ρ-
production at moderate and high photon virtualties Q2

was obtained. This success, based on the specific model of
the stochastic vacuum for non-perturbative QCD, sheds
new light on the nature of the pomeron. Since the stochas-
tic gluon field strength correlators in the vacuum explain
confinement, their application to the physics of the
pomeron builds an important bridge between low-energy
non-perturbative physics and high-energy scattering at
long distances. The coupling of the photon to the qq̄-dipole
is taken from perturbation theory. This approach has been
checked in inclusive photon scattering at high Q2 [9],
where at fixed scattering energy W the same photon wave
function and reaction mechanism reproduce the structure
function F2.
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For low Q2 < 1 GeV2 the perturbative photon wave
function is not acceptable, since the resulting large qq̄-
dipoles feel confinement and chiral symmetry breaking. A
way out of this dilemma has been shown in [9], where aQ2-
dependent quark mass, determined from comparison with
the phenomenological correlator of the vector current, has
been introduced in the perturbative photon wave func-
tion. This effective mass mimics chiral symmetry breaking
and also confinement in the Euclidean region as has been
shown in a detailed model investigation of the harmonic
oscillator. Comparison with the phenomenological corre-
lator indicates that chiral symmetry is effectively restored
at Q2 > 1 GeV2, the constituent quark goes over into a
partonic massless quark. Such a transition with resolution
Q2 is also seen in theoretical renormalization flow equa-
tions [10,11]. It is intimately connected with the chiral
phase transition at finite temperatures. The calculation of
diffractive vector meson production at low Q2 in the fol-
lowing paper will present an additional test of the validity
for the chiral transition.

Vector dominance or generalized vector dominance
could be in principle another approach to treat the low-
Q2 virtual photon. We found, however, that the method
has little predictive power since the results depend very
strongly on couplings of the inserted vector meson states
to the vector current; also the number of inserted vec-
tor meson states influences the results crucially. This be-
haviour is not unexpected, because the construction of a
transverse wave function of a virtual photon, composed of
wave functions of excited vector mesons, has to imitate a
delicate cancellation at large distances. A similar feature
can be seen very clearly in the harmonic oscillator model.
In our opinion the modified perturbative qq̄-wave function
of the photon is a more reliable and more predictive de-
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scription of the low-Q2 physics than the treatment with
generalized vector dominance.

The outline of the paper is as follows: In Sect. 2 we give
the light-cone wave functions of the ρ, ρ′ and ρ′′. Section 2
also contains our comparison of theory with experimental
branching ratios and decay widths. In Sect. 3 we calcu-
late the matrix elements and cross sections for diffractive
production of the vector meson states by real and virtual
photons. Section 4 concludes with a discussion and sum-
mary.

2 Wave functions and properties
of ρ, ρ′ and ρ′′

2.1 Light-cone wave functions

The hadronic light-cone wave functions of the mesons rep-
resent an important input to exclusive scattering. In the
perturbative regime for longitudinal photons at high Q2

the wave function at the origin dominates the production
process. This value of the wave function is known from
the measured e+e−-width. Parametrizations of the ground
state vector mesons based on this empirical information
have been developed in [8]. Here we want to extend this
work to the excited light vector mesons ρ′ and ρ′′. An anal-
ysis of the experimental data from e+e−-annihilation and
photoproduction of (π+, π−) shows that there are at least
two excited ρ-resonances, the ρ(1450) and the ρ(1700) [6].
Recently [7,12] it has been speculated that there may be
a hybrid state h(1450) with the quantum numbers of the
ρ-meson which decays predominantly into πa1.

The genuine quark model states are the 2S- and 2D-
excitations. The 2S-state couples to the photon strongly,
whereas the 2D-state has a vanishing wave function at
the origin and consequently only a small relativistically
induced coupling to the photon [13]. Also diffraction pro-
ceeds mostly without angular momentum transfer, so the
production of the 2D-state is suppressed. In the following
we will use a simplified ansatz for the vector meson states.
We employ the nonrelativistic notation 1S and 2S as a
short hand notation for light-cone wave functions which in
the nonrelativistic limit have this character. Our ansatz for
the physical vector meson states has the following form:

|ρ(770)〉 = |1S〉 ,
|ρ(1450)〉 = cos θ |2S〉 + sin θ |rest〉 ,
|ρ(1700)〉 = − sin θ |2S〉 + cos θ |rest〉 . (1)

Here the state |rest〉 describes the |2D〉- and hybrid |h〉-
states whose coupling to the photon are suppressed and
which hence we neglect in our approach. For details of the
wave functions both for the photon and the vector mesons
we refer to Appendix B.

2.1.1 Photon wave function

For the photon wave function we use the form derived in
[8] with a running quark mass m(Q2) in order to take

into account chiral symmetry breaking and confinement
at large distances in an approximate way. It depends on
the light-cone momentum fraction z of the quark and the
transverse distance r between the quark and the anti-
quark. The index λ indicates the helicity of the photon, h
and h̄ give the quark and antiquark helicities:

ψγ(Q2,λ)(z, r) =
√
Nc ef δff̄ χγ(Q2,λ)(z, r) , (2)

with1

χγ(Q2,λ=0) = −δh,−h̄ 2z(1 − z) Q
K0(εr)

2π
, (3)

χγ(Q2,λ=+1) =
√

2
{
ieiϕ ε

(
zδh+,h̄− − (1 − z)δh−,h̄+

)
×K1(εr)

2π
+m(Q2) δh+,h̄+

K0(εr)
2π

}
,

χγ(Q2,λ=−1) =
√

2
{
ie−iϕε

(
(1 − z)δh+,h̄− − zδh−,h̄+

)
×K1(εr)

2π
+m(Q2) δh−,h̄−

K0(εr)
2π

}
,

where ϕ is the azimut angle and

ε =
√
z(1 − z)Q2 +m2(Q2) . (4)

The running quark mass was determined to evolve as

m(Q2) (5)

=
{

0.220 GeV · (1 −Q2/Q2
0
)
, Q2 < Q2

0 = 1.05 GeV2 ,
0, Q2 ≥ Q2

0 ,

in [9] by matching the vector current correlator.

2.1.2 Vector meson wave functions

The vector meson light-cone wave functions are parame-
trized in an analogous way. One has to rely on such a phe-
nomenological construction as long as not even the form
of the light-cone Hamiltonian for valence states is known.
However, there are attempts to construct light-cone wave
functions via a Melosh transformation from solutions of a
relativized constituent quark model Hamiltonian [14]. Re-
cently, also a string equation for the meson on the light-
cone has been solved [15]. Since both approaches have not
specified the solutions for the vector states in a parame-
trized form, we use model wave functions similar to those
of Wirbel and Stech [16] to set up the wave functions
for the quark-antiquark 1S- and 2S-excitations. Since the
contributions of z near the endpoints are not significant
for production of vector mesons at moderate Q2 the ar-
gument against factorization of [17] and [18] have here no
practical consequence, see also [19].

1 In the following some indices and arguments are not given
explicitely in order not to overload the notation
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For convenience we introduce the following abbrevia-
tions:

hV,λ(z) = NV,λ

√
z(1 − z)

× exp

{
−1

2
M2(z − 1/2)2

ω2
V,λ

}
, (6)

gV,λ(r) = exp
{

−1
2
ω2

V,λ r
2
}
, (7)

where λ = L, T refers to longitudinal and transverse po-
larization and V = 1, 2 to the 1S- and 2S-state; M is
the mass of the 1S-state, i.e. of the ρ-meson. We have the
following wave functions:
1S, longitudinal:

ψ1(L) = δh,−h̄ 4z(1 − z) ω1L h1L(z) g1L(r) . (8)

1S, transverse:

ψ1(λ=+1) = h1T (z) g1T (r)
{
iω2

1T re
iϕ
(
zδh,+δh̄,−

−(1 − z)δh,−δh̄,+
)

+m(Q2) δh,+δh̄,+
}
,

ψ1(λ=−1) = h1T (z) g1T (r)
{
iω2

1T re
−iϕ

(
(1 − z)δh,+δh̄,−

−zδh,− δh̄,+
)

+m(Q2) δh,− δh̄,−
}
. (9)

For the 2S-state we allow for an excitation in the trans-
verse plane by taking in momentum space the excited
two dimensional harmonic oscillator wave function, for
the excitation in the 3-direction we introduce a polyno-
mial quadratic in z and symmetric under interchange of z
and (1 − z). It is further fixed by the condition that the
2S-state is orthogonal on the 1S-state. We thus obtain:
2S, longitudinal:

ψ2(L) = δh,−h̄4z(1 − z)ω2Lh2L(z) g2L(r)

×
{

(z(1 − z) −AL) +
√

2(ω2
2Lr

2 − 1)
}
. (10)

2S, transverse:

ψ2(λ=+1) = h2T (z) g2T (r)
{
iω2

2T re
iϕ
(
zδh,+ δh̄,−

−(1 − z)δh,−δh̄,+
) [

(z(1 − z) −AT )

+
√

2 (ω2
2T r

2 − 3)
]

+ m(Q2) δh,+ δh̄,+

×
[
(z(1 − z) −AT ) +

√
2 (ω2

2T r
2 − 1)

]}
,

ψ2(λ=−1) = h2T (z) g2T (r)
{
iω2

2T re
−iϕ

(
(1 − z)δh,+ δh̄,−

−zδh,− δh̄,+
) [

(z(1 − z) −AT )

+
√

2 (ω2
2T r

2 − 3)
]

+m(Q2) δh,− δh̄,−

×
[
(z(1 − z) −AT ) +

√
2 (ω2

2T r
2 − 1)

]}
; (11)

Table 1. The parameters for the 1S- and 2S-wave functions.
Besides the ρ-mass the bold face quantities are input. The val-
ues ω2λ are adjusted in order to have agreement of f2L with
f2T

State fV,λ[GeV] ωV,λ[GeV] NV,λ Aλ

1S-Longitudinal 0.1526 0.330 4.48
1S-Transverse 0.1526 0.213 3.44
2S-Longitudinal −0.137 0.297 3.21 0.228
2S-Transverse −0.137 0.235 1.96 −0.328

the factor
√

2 accounts for the two transverse excitation
modes.

The normalization constants N1λ are fixed by the wave
function normalization. The oscillator frequencies ω1λ are
chosen in such a way as to reproduce the ρ-meson elec-
tromagnetic decay coupling f1L = f1T . The values for ω2λ

were minimally deviated from the 1S-values in order to
give the same 2S-leptonic coupling for the longitudinal
and transverse state. The constants N2λ and AL, AT are
determined by the requirement that the 2S-state is both
normalized and orthogonal on the 1S-state. For details
we refer to Appendix B. In Table 1 we collect the relevant
parameters.

2.2 Properties of the physical ρ-, ρ′- and ρ′′-states

The mixing angle θ is determined by fitting the experi-
mental branching ratios

X1 = Be+e− Bπ+π− , (12)
X2 = B2π+2π−/Bπ+π− ,

X3 = Bπ+π− +B2π+2π−

for the ρ′- and ρ′′-resonances; it is calculated in Appendix
C:

θ = 41.2◦ . (13)

In Table 2 we summarize the main properties of the
three physical states ρ, ρ′ and ρ′′. There is considerable
uncertainty about the magnitude of ΓV →e+e− for the res-
onances ρ′ and ρ′′. The theoretical dilepton spectrum is
in fair agreement with the data, cf. Fig. 1. In the 1.6 GeV
region a destructive interference pattern shows up which
fixes the relative signs of the vector meson couplings fV

as (+,−,+). The signs of the decay constants of the ρ′
and ρ′′ correspond to the negative sign of the 2S-wave
function at the origin, cf. (10) and (11), and the mixing
angle θ = 41.2◦ in the first quadrant. In the same way as
the dilepton width, e+e−-annihilation measures the short
range part of the wave functions; therefore the couplings
fV essentially determine both (see Appendix A). At first
sight the opposite pattern with a constructive interference
in photoproduction is puzzling, see Fig. 2.

Because of the decay into πa1 the ρ′- and ρ′′-resonances
are considered as candidates for hybrid states in [12]. On
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Table 2. Properties of the ρ-, ρ′- and ρ′′-states. The couplings of ρ′ and ρ′′ to the
electromagnetic current (bold face) result from both the physical states taken as mixed
states according to (1) and the state |2S〉 being normalized and orthogonal on |1S〉.
For the masses, total and ρ-meson electromagnetic decay width see [30]. The values
X1 and X2 (see (12)) for ρ′ and ρ′′ are taken from an analysis by Donnachie and
Mirzaie [6] of the (π+, π−)-mass spectra in photoproduction and e+e−-annihilation.
Within the given accuracy we set Bρ→π+π− = 1 and estimate the branching ratios
of ρ′ and ρ′′ in two or four charged pions to 80%. The last two lines summarize the
branching ratios

ρ ρ′ ρ′′

MV [ GeV] 0.7681 ± 0.0013 1.465 ± 0.025 1.700 ± 0.020
Γ tot

V [ GeV] 0.1509 ± 0.0030 0.310 ± 0.060 0.235 ± 0.050
ΓV →e+e− [ GeV] (6.77 ± 0.32)×10−6 1.63×10−6 1.07×10−6

fV [ GeV] 0.1526 − 0.103 +0.0903
X1 4.48×10−5 5.2×10−7 6×10−7

X2 0 12.5 9.17
X3 1 0.8 0.8

BV →π+π− 1 0.0593 0.0787
BV →2π+2π− 0 0.741 0.721

Fig. 1. Mass spectrum of e+e−-annihilation into π+π−. In the
1.6 GeV region a destructive interference shows up determin-
ing the sign pattern (+,−,+) of the vector meson couplings fV

to the electromagnetic current. The full curve is the fit of Don-
nachie and Mirzaie [6]. The dashed line is the parametrization
for ρ′ and ρ′′ used in this paper (see Table 2 and Appendix A)

the other hand the presence of an ωπ-decay channel calls
for a 2S-component. For the ρ′′ the analysis of the de-
cay channels does not demand a mixing, but allows the
presence of a hybrid component in the wave function.

3 Diffractive cross sections

The diffractive matrix elements for vector meson produc-
tion are evaluated in the specific model of the stochas-
tic vacuum (MSV), see Refs [8,9,20]. One feature of this
model is that the same mechanism which confines quarks
also induces a string-string interaction of colour singlet
states which leads to a cross section increasing with the
qq̄-dipole size roughly like r1.5, when r is in the interest-
ing range of 1 fm < r < 2 fm. In an alternative model of

Fig. 2. Mass spectrum of π+π−-photoproduction on the pro-
ton. The interference in the 1.6 GeV region is constructive. The
solid line is our result for π+π−-photoproduction using simple
Breit-Wigner distributions for the ρ, ρ′ and ρ′′. Experimental
points are not normalized and taken from Aston et al. [1], with
a contribution of 50 ± 20 nb from the g(1690) subtracted [29]
(see also [6]

dipole-proton scattering, cf. Refs [21,22], there is a non-
perturbative dipole-proton cross section which amounts to
about half of the total value for 0 ≤ r ≤ 2 fm. The other
half of the cross section comes from a perturbative two-
gluon exchange which saturates at r = 1 fm. The differ-
ence between the two descriptions is most pronounced at
distances 1 fm ≤ r ≤ 2 fm. Such large dipole sizes can only
be tested with excited meson states like the ρ-resonances.
It is decisive to investigate the photo- and leptoproduc-
tion of ρ′- and ρ′′-mesons. These experiments hold the key
to find important long-range gluon fluctuations in diffrac-
tion which are related to confinement in low-energy spec-
troscopy.

The T-scattering amplitude is given by the integral
over z and r of the wave function overlap summed over
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quark helicities and multiplied with the dipole-proton am-
plitude:

Tλ
V (s, t) = is

∫
dzd2r

4π
ψ†

V (λ)ψγ(Q2,λ)(z, r) Jp(z, r, ∆T ) ,

(14)

where the invariant momentum transfer squared t = −∆2
T

(up to corrections of the order s−2, cf. [8]) and the ampli-
tude Jp has the form:

Jp(z, r, ∆T ) = 2
∫ ∞

0
bdb 2πJ0(∆T b) (15)

×
∫
dzpd

2rp

4π
|ψp(zp, rp)|2J(b, z, r, zp, rp) .

The kernel J(b, z, r, zp, rp) is provided by the MSV and
can be understood as the interaction amplitude for the
scattering of two colour dipoles, where the second, with
index “p”, denotes a proton in the quark-diquark picture;
b is the scattering impact parameter. This kernel as well as
the profile function Jp(z, r, ∆T ) are the same as in previ-
ous work on moderate- and high-Q2 vector meson produc-
tion. The Bessel function J0 is obtained from the angular
integral in the Fourier transform. For a detailed discussion
see [8].

With (14) as definition of the T-amplitude the differ-
ential cross section with respect to t writes

dσλ
V

dt
(t) =

1
16πs2

|Tλ
V (s, t)|2 . (16)

Note, that the MSV evaluates Jp in an eikonal appro-
ximation which causes the T-amplitude to depend on s
only kinematically. Integration over t yield cross sections
σλ

V which are constant and refer to a scattering energy√
s = 20 GeV where the parameters of the model are fixed

(see discussion below). For unpolarized photons the exper-
imental data include transverse and longitudinal contribu-
tion:

σ = σT + εσL , (17)

where the rate ε of longitudinally polarized photons de-
pends on the lepton scattering angle, the photon energy
and virtuality and typically varies in the range from 0.7
to 1, see Table 3 and [8].

In Fig. 3 we display the quantity

J (0)
p (z, r) :=

∫ 2π

0

dϕr

2π
Jp(z, r, ∆T = 0) (18)

Due to the optical theorem it describes the total cross sec-
tion of a dipole with light-cone fraction z and size r (aver-
aged over all its orientations) on a proton. It depends only
very slightly on z and we display it for the central value
z = 1/2. The grey lines show the contribution of a com-
pletely abelian model (which cannot yield confinement),
whereas the full lines represent the dipole-proton cross
section as evaluated in the MSV. The monotonous rise at

Fig. 3. Dipole-proton total cross section J (0)
p and the effective

overlap rψ†
V (λ)ψγ(Q2,λ) as function of the transverse dipole size

r. The black lines are the function J(0)
p (z = 1/2, r) (18), i.e. the

total cross section of a dipole of fixed light-cone fraction z =
1/2 and transverse extension r, averaged over all orientations,
as a function of r; the grey lines show the cross section of a
completely abelian, non-confining theory. The leptoproduction
amplitude is obtained by integration over the product of Jp and
the overlap function, which essentially (cf. (19)) is the quantity
shown for Q2 = 0, 1 and 20 GeV2 as short, medium and long
dashed curves, respectively

large values of r is a consequence of a string-string interac-
tion [8,20]. It depends crucially on the field strengths cor-
relators. The input parameters have been fixed in order to
obtain a consistent picture of the slope of the qq̄-confining
potential, the numerical results for the correlators from
lattice simulations and proton-proton scattering at a scat-
tering energy

√
s = 20 GeV, where hadron-hadron cross

sections are approximately energy independent. All abso-
lute cross sections calculated in the following refer thus to
this energy. For ratios of cross sections our results are also
relevant at higher energies, since change with

√
s should

affect numerator and denominator approximately in the
same way.

The second important input to the diffractive lepto-
production cross section are the overlap matrix elements
of the incoming photon with the outgoing vector meson.
As has already been pointed out in [22] the node in the 2S-
state leads to a compensation of contributions of large and
small dipole sizes. For our investigation this compensation
is particularly interesting since it allows very specific tests
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Table 3. Theoretical cross sections for ρ-meson photo- and leptoproduction in comparison with data from NMC [23] and E665
[24], the latter with separate transverse and longitudinal polarizations. The experimental data contain a Regge contribution
which at these energies can be estimated to about 15%

Integrated ρ-cross sections: theory vs experiment

Q2 [GeV2] σT [µb] σL [µb] ε σT +εσL [µb]
th.a exp. th.a exp. exp. th.a exp.

0 7.86 9.4±1.1 b

0.17 4.28 6.37±0.89 0.517 1.39±0.26 0.76 4.67 7.42±0.91
0.25 3.37 4.11±0.23 0.603 1.15±0.12 0.80 3.85 5.03±0.25
0.43 2.14 2.67±0.13 0.645 1.051±0.081 0.81 2.66 3.52±0.15
0.76 1.12 1.269±0.073 0.530 0.708±0.052 0.81 1.55 1.84±0.084
1.35 0.426 0.533±0.045 0.300 0.422±0.040 0.81 0.669 0.875±0.055
2.39 0.127 0.165±0.022 0.135 0.185±0.025 0.81 0.237 0.315±0.030
2.5 115.×10−3 — 126.×10−3 — 0.50 178.×10−3 (170±31)×10−3

3.5 51.6×10−3 — 71.7×10−3 — 0.66 98.9×10−3 (60±10)×10−3

4.23 32.0×10−3 (55±11)×10−3 50.7×10−3 (88±17)×10−3 0.81 73.1×10−3 (126±18)×10−3

4.5 27.3×10−3 — 45.1×10−3 — 0.66 57.1×10−3 (65±11)×10−3

5.5 16.1×10−3 — 30.4×10−3 — 0.72 38.0×10−3 (41±7)×10−3

6.9 8.68×10−3 — 19.0×10−3 — 0.76 23.1×10−3 (23±3)×10−3

7.51 6.85×10−3 (17±5)×10−3 15.8×10−3 (38±11)×10−3 0.81 19.7×10−3 (47.8±10.2)×10−3

8.8 4.36×10−3 — 11.1×10−3 — 0.78 13.1×10−3 (15±2)×10−3

11.9 1.80×10−3 — 5.55×10−3 — 0.82 6.35×10−3 (5.8±0.9)×10−3

16.9 0.617×10−3 — 2.36×10−3 — 0.81 2.53×10−3 (2.6±0.7)×10−3

a Pomeron contribution
b For photon energies 20<ν<70 GeV, Ref. [2].

of the dipole cross section at large distances where the
MSV makes specific predictions. In order to exhibit this
effect we display in Fig. 3 the overlap function which is
for demonstration purpose integrated over z and averaged
over all orientations

rψ†
V (λ)ψγ(Q2,λ)(r)

:=
∫

dz

4π

∫ 2π

0

dϕr

2π
|r|ψ†

V (λ)ψγ(Q2,λ)(z, r) , (19)

both for transverse and longitudinal photons and several
values of Q2.

The T-amplitude Tλ
V (s, t), cf. (14), can be estimated

from Fig. 3 by multiplying the dipole-proton cross section
with the overlap function and integrating over r.

The change of sign in the 2S-wave function makes the
T-amplitude very sensitive to the behaviour of the dipole-
proton cross section Jp(z, r,∆T ) at larger values of r. Only
its strong increase can overcome the negative contribution
below the node and lead to a positive sign of the imaginary
part of Tλ

V (s, t). This will turn out to be crucial for the
explanation of the different interference patterns in pho-
toproduction and e+e−-annihilation mentioned in Sect. 2
and shown in Figs. 1 and 2.

The importance of the outer region, in particular for
the 2S-state, can also be seen from Fig. 4: There the cross
section is calculated as function of an upper cut-off rcut in
the r-integration of (14). As can clearly be seen, in pho-
toproduction the inner region of the overlap dominates

for r ∼< 1.2 fm, but compensation occurs at rcut ∼= 1.7 fm
from the outer region, which contributes significantly to
the T -amplitude up to r-values of about 2.5 fm. By vary-
ing the photon-virtuality Q2 one shifts the position of
the node in the overlap and thus the weight of the neg-
ative and positive contributions. This is reflected in the
strong Q2-dependence of the σ(rcut)-curves in Fig. 4 and
the structured Q2-dependence of the transverse and lon-
gitudinal cross sections in Fig. 5. For the transverse cross
section the outer positive region dominates for Q2 ∼< 0.3
GeV2, where there is a dip in the 2S-transverse cross sec-
tion; for the longitudinal one the dip is at Q2 ∼= 2.5 GeV2.
For high Q2-values only small dipole sizes r contribute
(early saturation in Fig. 4) since the vector meson wave
function suppresses the endpoint values of the longitudi-
nal momentum fraction z.

In order to trace the experimental behaviour of the
cross section as function of the invariant mass M of the pi-
ons one needs the amplitudes of the ρ′- and ρ′′-resonances
separately.

Experimentally the π+π−- and 2π+2π−-cross sections
are measured. Here it is essential to include the relevant
branching ratios and the finite widths of the resonances
which in our case lead to a considerable reduction of the
cross section as compared to a zero-width approach. In
detail we calculate for the final states f = π+π− and
2π+2π− the differential cross sections in respect to their
invariant mass M:
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Fig. 4. Fraction of production cross sections due to dipole
sizes smaller than rcut. The short, medium and long dashed
curves refer to Q2 = 0, 1 and 20 GeV2, respectively. Due to
the node in the wave function of the 2S-state (see Fig. 3) the
contribution of large dipole sizes is particularly important for
small values of Q2

dσf,λ

dM
=

2M
16πs2

∫
dt

∣∣∣∣∣∣
∑

V =ρ,ρ′,ρ′′
Tλ

V (s, t)

√
MV Γ tot

V

π

× cV f

M2 −M2
V + iMV Γ tot

V

√
BV →f

∣∣∣∣∣
2

. (20)

For the branching ratios BV →f we refer to the discussion
in Table 2; the cV f arise from proper normalization, cf.
(A10) and (A11), and deviate from 1 on the few-percent-
level.

In the upper part of Fig. 5 we show the transverse and
longitudinal ρ-production cross section for values
0.02 GeV2 ≤ Q2 ≤ 20 GeV2 together with the data from
NMC [23] and E665 [24]. The theoretical photoproduc-
tion cross section is σγp = 7.9µb, the experimental value
9.4 ± 1.1µb [2]. The experimental data contains also
Reggeon, i.e. non-diffractive exchange which we have not
taken into account. We may roughly estimate the contri-
bution at least for low Q2 by compairing with the
Donnachie-Landshoff parametrization [25] of the total γp-
cross section. There at

√
s = 20 GeV the Reggeon contri-

bution is 7 percent, hence we estimate for the production

0.05 0.1 0.5 1 5 10.

0.001
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0.1

1

0.05 0.1 0.5 1 5 10.
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Fig. 5. Integrated elastic cross sections of the ρ-meson and the
2S-state as a function of the photon virtuality Q2. E665 [24]
provides data for the ρ, cf. Table 3; we roughly estimate the
pomeron contribution as 85% of the measured cross section

Fig. 6. Ratio of longitudinal over transverse integrated cross
sections as function of Q2 both for the ρ-meson (full) and the
2S-state (dashed). There is only data for ρ-production

cross section, i.e. the square of the amplitude, a Reggeon
contribution of 15 percent. As constituent quark mass we
use m(Q2) as it has been determined from the vector cur-
rent correlator and used in inclusive photoproduction, cf.
[9]. At moderate Q2 the E665 data are almost 20–30%
higher than our theoretical calculations, but an extrapo-
lation of the E665 data lies by about the same amount
above the NMC data, which we reproduce quite well. At
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Fig. 7. Differential cross section as a function of −t for the ρ-meson and the 2S-state (upper and lower plots) for both longitudinal
and transverse polarization (left and right). The curves with increasing dash sizes refer to Q2 = 0, 1/4, 2, 10, 20 GeV. For the
2S-state the node in the wave function has a strong influence on the t-dependence

Q2 > 1 GeV2 the theoretical cross sections are identical
to the previously calculated γp → ρp cross sections, see
[8] and (5). Theory is confronted with the experimental
data in more detail in Table 3.

The second part of Fig. 5 shows the integrated lepto-
production cross section for the 2S-state. The different
node structure of the longitudinal and transverse wave
functions leads to slightly different behaviour. In the longi-
tudinal cross section there is a real zero at Q2 ∼= 2.5 GeV2.
In the transverse cross section both helicity parts of the
wave function, cf. (11), contribute to the overlap with the
photon. The relativistic component with Lz = 1 has its
zero at a different transverse separation than the nonrelav-
istic part with Lz = 0 and aligned quark spins. There-
fore the cross section has not a zero, but only a mini-
mum at rather small Q2 ∼= 0.3 GeV2 and a plateau at
Q2 ∼= 1 GeV2. The magnitude of the cross section decrases
in both cases since the photon wave function shrinks in
transverse extent at higher Q2, and the inner negative
parts of the excited vector meson wave functions become
dominant. Asymptotically the longitudinal cross section
dominates over the transverse by a power of Q2; note,
that for the 2S-state we are not in the asymptotic region
even at Q2 = 20 GeV2.

In Fig. 6 we show the ratio

RLT = σL/σT (21)

of longitudinal to transverse cross sections for the ρ- and
2S-states including all Q2 virtualties up to 20 GeV2. For
the ρ-meson the rapid rise of RLT is confirmed quite well.
We remark that an analysis of colour transparency in nu-
clei [26] should include a rapidly increasing ratio of longi-
tudinal to transverse cross sections.

In Fig. 7 the respective differential cross sections are
shown. For the 1S-meson production the longitudinal and
transverse differential cross sections follow roughly expo-
nential behaviour with a slight upward curvature at larger
−t values. In comparison the 2S-state produces sharp dips
in the differential cross sections which occur at the same
Q2 where the integrated cross sections have minima. The
occurence of the dips is a consequence of the node in the
wave function, the exact location of these minima is highly
parametrization dependent. At these Q2-values where the
minima occur the cross section is much faster falling off
than in general. For an experiment where the superposi-
tion of longitudinal and transverse cross sections will be
measured, these sharper fall-offs may be a good signal for
interesting physics.
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Fig. 8. Mass spectrum of e+e−-annihilation into 2π+2π−. The
full line is a fit by Donnachie and Mirzaie [6]. The dashed line
is the result of the parametrization used in this paper (see
Table 2 and Appendix A)

Fig. 9. Our result for the mass spectrum of photoproduced
2π+2π−. The data are from [2], scaled with a factor 0.5

We revisit now the π+π−- and 2π+2π−-production ex-
periments across the 1 − 2 GeV mass region. The most
interesting result of the experiments is the different in-
terference pattern in e+e−-annihilation compared to pho-
toproduction. In our convention the 2S-wave function is
negative relative to the ground state wave function at the
origin so that the interference pattern determines the mix-
ing angle to be in the first quadrant which gives opposite
signs for the ρ′- and ρ′′-annihilation amplitudes, i.e. the
ρ-, ρ′- and ρ′′-annihilation amplitudes have the relative
signs (+,−,+). In Fig. 1 the dashed curve shows the the-
oretical π+π−-mass distribution in e+e−-annihilation ac-
cording to the parametrization for ρ, ρ′ and ρ′′ used in
this paper (see Table 2 and Appendix A). The data are
from Orsay and Novosibirsk, Refs [4,5]; its main feature is
the destructive interference slightly above 1.5 GeV which
is correctly reproduced with the mixing angle θ = 41.2◦.
Our parametrization also gives a sizeable 2π+2π−-cross
section of 40 nb in this range, see Fig. 8.

For photoproduction, however, cf. Fig. 2, experimental
cross section from SLAC [1] show a small enhancement

near the same energy. More recent data [27] even point
to the possibility of 3S-production. The different interfer-
ence of the photoproduction amplitudes TV , obeying the
sign pattern (+,+,−), comes from the dipole character of
the cross section which favours the large-r part of the vec-
tor meson wave function more than the short range part
which is important for the e+e−-coupling. The theoretical
2π+2π−-photoproduction cross section is shown in Fig. 9.
It is experimentally very demanding to subtract the back-
ground in order to identify the resonating contribution.

Therefore it might be more realistic to look for the
strong variation in the observables with Q2 than for the
absolute values. It should be noted that the strong vari-
ations of the cross sections with Q2 in Figs. 5, 6 and 10
are a clear prediction of our model, the exact positions of
the dips, however, depend crucially on the exact position
of the node in the 2S-state.

Experimentally also accessible is the ratio of 2π+2π−-
production via ρ′ and ρ′′ over π+π−-production via ρ:

Rπ =
σf,T

(ρ′ρ′′) + εσf,L
(ρ′ρ′′)

∣∣∣
f=2π+2π−

σf ′,T
(ρ) + εσf ′,L

(ρ)

∣∣∣
f ′=π+π−

, (22)

where

σf,λ
(ρ) =

∫ ∞

sf

dM2 1
16πs2

∫
dt

∣∣∣∣∣Tλ
ρ (s, t)

√
MρΓ tot

ρ

π

× cρf

M2 −M2
ρ + iMρΓ tot

ρ

√
Bρ→f

∣∣∣∣∣
2

,

σf,λ
(ρ′ρ′′) =

∫ ∞

sf

dM2 1
16πs2

∫
dt

∣∣∣∣∣∣
∑

V =ρ′,ρ′′
Tλ

V (s, t)

√
MV Γ tot

V

π

× cV f

M2 −M2
V + iMV Γ tot

V

√
BV →f

∣∣∣∣∣∣
2

. (23)

The interference between the ρ′ and ρ′′ reduces the result
compared to the zero-width approximation to 47 ± 18 %,
where the uncertainty is due to the uncertainty in the
widths of the resonances (see Table 2).

In Fig. 10 we show Rπ for ε = 1: After a small fluc-
tuation near Q2 = 1 GeV2 it increases continuously. The
structure at small Q2 comes from the conspiracy of the
longitudinal and transverse parts in the ratio; due to our
lack of knowledge of the exact position of the nodes there
may be only a continuous rise in Rπ instead of a struc-
tured fluctuation. Especially the transverse cross section
is very sensitive to the shape of the 2S-state, since the
large transverse photon extends well across the node. The
longitudinal photon even at small Q2 mainly tests the in-
ner negative part of the state. At high Q2 our calculation
of Rπ should truely reflect physics at work and indeed is
in qualitative agreement with preliminary data from H1
[28] which still have large error bars.
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Fig. 10. Ratio Rπ of 2π+2π−-production via ρ′ and ρ′′ over
π+π−-production via ρ as function of Q2, cf. (22). Our curve
is for to ε = 1. Experimental points are taken from Refs [31]
and [28]

4 Discussion and summary

In conclusion we have presented a realistic calculation for
photoproduction which is based on a description of the ρ′-
and ρ′′-mesons as mixed quark-antiquark 2S-states with
some inert residual component. The decay characteristics
of the ρ′ point towards a sizeable hybrid admixture which
may exist also for the ρ′′. With our ansatz the different
interference patterns in e+e−-annihilation and photopro-
duction of two charged pions induce a mixing angle which
implies that the ρ′ and ρ′′ are about one half a quark-
antiquark 2S-state and one half hybrid or 2D-excitation.
In this paper we give further evidence for the validity
of the picture of diffraction as scattering of colour neu-
tral states due to long-range gluon fluctuations. The large
vector meson excited states test favourably our picture of
a dipole-proton cross section increasing with the quark-
antiquark transverse distance r due to string-string inter-
actions which emerge from the model of the stochastic vac-
uum as a typical consequence of non-perturbative QCD.
Especially transverse photoproduction has a matrix ele-
ment where the elementary dipole-proton cross section is
sampled between 1 and 2 fm. It is the dipole-proton cross
section in that range which explains the markedly different
interference patterns for e+e−-annihilation and photopro-
duction. If it turns out that with increasing energy the
excitation of the residual hybrid state becomes more im-
portant, we would see some indication for a perturbative
gluonic component in the photon wave function which has
matrix elements with the intrinsic glue in the hybrid. This
would at the same time open up a window to the world
of nonexotic hybrids and give us more insight into the im-
portance of perturbative physics in diffraction. We have
calculated all diffractive cross sections at

√
s = 20 GeV,

but argued that the calculated ratios as σL/σT are also
valid at higher energies. This is seen in the good agreement
with HERA-data [28]. A big challenge remains to combine
this picture of long range string-string interactions due to
the stochastic vacuum with short range perturbative gluon

fluctuations in order to understand the energy dependence
of diffraction.

Acknowledgements. We thank Sandi Donnachie for many illu-
minating discussions during his stay in Heidelberg and E.L.
Gubankova for participation in the early stage of the work.

A Leptonic decay, l+l−-annihilation

Vector meson leptonic decay width and l+l−-annihilation
cross section into the final states f = π+π− and 2π+2π−
are determined by the same S-matrix element:

S = 〈l−(p, s) l+(p′, s′) |S|V (q, λ)〉 , (A1)

where p, p′ and q are the momenta, s, s′ and λ the spins
and the helicity, respectively. With the T -matrix given
through S =: i(2π)4δ4(p+ p′ − q) T we have

T = −e ūs(p)γµvs′(p′)
gµν

(p+ p′)2 + iε

×〈0 |Jν
em(0)|V (q, λ)〉 , (A2)

= −e2ūs(p)γµvs′(p′)
1
s
fV MV εµ(q, λ) ;

in the last line we have introduced the total energy squared
s = (p+ p′)2 and the coupling fV of the vector meson to
the electromagnetic current, which is defined through

〈0 |Jµ
em(0)|V (q, λ)〉 = efV MV ε

µ(q, λ) . (A3)

Averaging over incoming spins s and s′ and summation
over outgoing helicities λ gives

∑′ |T |2 = −e4

3

(
fV MV

s

)2

×
∑
s,s′

tr [γµus(p)ūs(p)γµvs′(p′)v̄s′(p′)] ,

= +
4e4

3

(
fV MV

s

)2

s ·
(
1 + 2m2

l

s

)
, (A4)

where ml is the lepton mass.
The decay rate of the vector meson in its rest frame is

dΓ =
1

2MV
(2π)4δ4(p+ p′ − q)

d3p
(2π)32p0+

× d3p ′

(2π)32p ′
0+

∑′ |T |2 ; (A5)

phase space integration leads to

ΓV →l+l− =
4πα2

3
f2

V

MV
·
(
1 + 2m2

l

M2
V

)√
1 − 4m2

l

M2
V
. (A6)

The differential cross section to produce in l+l−-anni-
hilation a real vector meson V is

dσ =
1

2w(s,m2
l ,m

2
l )

(2π)4δ4(p+ p′ − q)

× d3q
(2π)32q0+

∑′ |T |2 , (A7)
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where w(x, y, z) is the Källen function; after phase space
integration it writes

σl+l−→V =
4πe4

3

(
fV

MV

)2

δ(s−M2
V )

·
1 + 2m2

l

M2
V√

1 − 4m2
l

M2
V

. (A8)

For electrons the ml-depending factors in (A6) and (A8)
can be neglected.

To calculate the ρ-channel mass spectra of photopro-
duction and e+e−-annihilation into two and four charged
pions we distribute the ρ-, ρ′- and ρ′′-mesons according to
simple Breit-Wigner resonances:

T (M2) := T ·
√
MV Γ tot

V

π

cV f

M2 −M2
V + iMV Γ tot

V

, (A9)

where T is the corresponding T -amplitude. The constraint
for the constants cV f is that the integrated cross section
is not altered: ∫ ∞

sf

dM2
∣∣T (M2)

∣∣2 = |T |2 , (A10)

where the threshold sf is either (2mπ)2 or (4mπ)2 for the
respective final state. The factor |T |2 drops out and it
follows

cV f =
[

1
2 + 1

π arctan M2
V −sf

MV

]−1/2
, (A11)

which numerically implies values exceeding 1 up to seven
percent.

We finally have

σe+e−→f (M2) =
4πe4

3

∣∣∣∣∣∣
∑

V =ρ,ρ′,ρ′′

fV

MV

√
MV Γ tot

V

π
(A12)

× cV f

M2 −M2
V + iMV Γ tot

V

√
BV →f

∣∣∣∣∣∣
2

(for the branching ratios, widths and masses cf. Table 2).
For annihilation into f = π+π− we parametrize in (A12)
the ρ-width Γ tot

ρ by the polynomial

Γ tot
ρ

[
1 + a1 ·

(
M2

M2
ρ

− 1
)

+ a2 ·
(

M2

M2
ρ

− 1
)2
]

(A13)

and adjust a1, a2 and cρ,π+π− in order to reproduce the
experimental spectrum.

B Wave functions

Construction

In previous work, see Appendix A in [8], we explicitely
constructed the photon wave function in the frame of light-
cone perturbation theory. For the probability amplitude

for a photon with momentum q = (q+, q− = −Q2/2q+,
q = 0), virtuality Q and helicity λ to fluctuate into a
qq̄-pair one has to calculate the expressionB1

ψ̃h,h̄
γ(Q2,λ)(z,k) =

√
Ncefδff̄

√
zz̄

zz̄Q2 +m2 + k2 (B1)

×ū(zq+,k, h) εµ(q, λ)γµ v(z̄q+,−k, h̄) ,

where the quark carries zq+ longitudinal, k transverse mo-
mentum and helicity h (the antiquark accordingly z̄q+, −k
and h̄). With the polarization vectors ε(q, 0) = (q+/Q,
Q/2q+,0) and ε(q,±1) = −1/

√
2 (0, 0, 1,±i) and the con-

vention of light-cone components q± = (q0 ± q3)/
√

2, g+−
= 1, a lengthy but straightforward evaluation of (B1) gives

ψ̃h,h̄
γ(Q2,λ)(z,k) =

√
Nc efδff̄

{
− 2zz̄ Q δh,−h̄ · δ0λ

+
√

2
[± ke±iϕk

(
zδh+,h̄− − z̄δh−,h̄+

)
+m δh±,h̄±

] · δ±
λ

}
1

ε2 + k2 , (B2)

where k = |k| and ε =
√
zz̄Q2 +m2, cf. (4).

For an arbitrary function f̃(k) we define the Fourier
transform with respect to the transverse momentum k
through ∫

d2k
(2π)2

eik·r f̃(k) = f(r) . (B3)

For an arbitrary function we have further:∫
d2k

(2π)2
eik·r ke±iϕk f̃(k) = −i (∂1 ± i∂2) f(r) . (B4)

If f̃ does not depend on the direction of k, the r.h.s. of
(B4) can be written as

−i e±iϕr ∂r f(r) , (B5)

where r = |r|.
We thus have for the Fourier transform of (B2):

ψh,h̄
γ(Q2,λ)(z, r) =

√
Ncefδff̄

{
− 2zz̄Q δh,−h̄ · δ0λ

+
√

2
[± i e±iϕr

(
zδh+,h̄− − z̄δh−,h̄+

)
×(−∂r) +m δh±,h̄±

] · δ±
λ

}

×
∫

d2k
(2π)2

eik·r 1
ε2 + k2 . (B6)

With ∫
d2k

(2π)2
eik·r 1

ε2 + k2 =
K0(εr)

2π
(B7)

B1 Throughout this appendix we abbreviate z̄ = 1 − z
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and − d
dzK0(z) = K1(z) (B6) becomes:

ψh,h̄
γ(Q2,λ)(z, r) (B8)

=
√
Ncefδff̄

{
− 2zz̄Q δh,−h̄

K0(εr)
2π

· δ0λ
+

√
2
[± iε e±iϕr

(
zδh+,h̄− − z̄δh−,h̄+

)
×K1(εr)

2π
+m δh±,h̄±

K0(εr)
2π

] · δ±
λ

}
,

which is (2) and (3).
We model wave functions for the vector mesons ac-

cording to the photon wave function:

ψ̃h,h̄
V (λ)(z,k) =

{
4zz̄ ωV,λ δh,−h̄ · δ0λ +

[± ke±iϕk

× (zδh+,h̄− − z̄δh−,h̄+
)

+mδh±,h̄±
] · δ±

λ

}
×ψ̃V (λ)(z, k) , (B9)

where the energy denominator of the photon, (zz̄Q2+m2+
k2)−1, has been replaced by functions ψ̃V (λ)(z, k) which
also do not depend on the direction of k. We define for
the 1S-state

ψ̃1(λ)(z, k) = N1,λ

√
zz̄ e− 1

2 M2 ω−2
1,λ (z−1/2)2 · 2π

ω2
1,λ

e− 1
2 ω−2

1,λk2
,

= h1,λ(z) · 2π
ω2

1,λ

e− 1
2 ω−2

1,λk2
(B10)

the harmonic oscillator parametrization by Wirbel and
Stech, cf. [16], which is peaked at the nonrelativistic value
z = 1/2. For the 2S-state we have to differentiate that it
can be “radially” excited either in longitudinal or, with
two modes, in transverse direction. We thus introduce the
simplest polynomial which is symmetric under exchange
of z ↔ z̄ in longitudinal direction and the transverse de-
pendence of the 2S-harmonic oscillator:

ψ̃2(λ)(z, k) = N2,λ

√
zz̄ e− 1

2 M2 ω−2
2,λ (z−1/2)2 · 2π

ω2
2,λ

e− 1
2 ω−2

2,λk2

×{(zz̄ −Aλ) +
√

2 (1 − ω−2
2,λk

2)
}
,

= h2,λ(z) · 2π
ω2

2,λ

e− 1
2 ω−2

2,λk2

×{(zz̄ −Aλ) +
√

2 (1 − ω−2
2,λk

2)
}
. (B11)

In (B10) and (B11) we have used the definition of hV,λ(z)
from (6), factors in which (B9) differs from (B2) are ab-
sorbed in the normalization constants NV,λ.

Fourier transformation of (B9) gives

ψh,h̄
V (λ)(z, r) =

{
4zz̄ ωV,λ δh,−h̄ · δ0λ +

[
± i e±iϕr

× (zδh+,h̄− − z̄δh−,h̄+
)
(−∂r)

+mδh±,h̄±

]
· δ±

λ

}
ψV (λ)(z, r) . (B12)

Using∫
d2k

(2π)2
eik·r · 2π

ω2
1,λ

e− 1
2 ω−2

1,λk2
= e− 1

2 ω2
1,λr2

(B13)

and ∫
d2k

(2π)2
eik·r · 2π

ω2
1,λ

e− 1
2 ω−2

1,λk2
(1 − ω−2

1,λk
2)

= e− 1
2 ω2

1,λr2
(ω2

1,λr
2 − 1) (B14)

we obtain the representations given in (8), (9) and (10),
(11).

Fixing of the parameters

There are several parameters ωV,λ, NV,λ and Aλ to be
fixed. The constraints are as follows.

The first condition concerns the coupling to the elec-
tromagnetic current fV , see (A3), which is connected with
the wave function at the origin and determined by the vec-
tor meson e+e−-decay width through

ΓV →e+e− =
4πα2

3
f2

V

MV
; (B15)

cf. (A6) where the electron mass is neglected. With the
wave functions given this means for λ = L, ±1:

fV,L = êV

√
Nc · 4ωV,L ·

∫
dzd2k
16π3 4zz̄ · ψV (L)(z, k) ,

fV,T = êV

√
Nc · 4

√
2

MV
·
∫
dzd2k
16π3

{
(z2 + z̄2)k2 +m2}

× 1
4zz̄

· ψ̃V (λ=±1)(z, k) , (B16)

where êV denotes the effective quark charge in the vector
meson V in units of the electromagnetic charge, i.e. êV =
1/

√
2 for the ρ-mesons. Note, that in the transverse case

the mass of the corresponding state enters explicitely; the
numerical value of f2T given in Table 1 is based on M2S =
1.6 GeV.

The second condition is the normalization of the wave
functions according to

〈V (q′, λ′)|V (q, λ)〉 = (2π)32q+δ(q+ − q′+)δ2(q − q′)δλλ′ ,
(B17)

i.e.

1 =
∫
dzd2k
16π3

∑
h,h̄

∣∣∣ψ̃h,h̄
V (λ)(z,k)

∣∣∣2 ; (B18)

or explicitly for λ = L, ±1:

1 = 2ω2
V,L ·

∫
dzd2k
16π3 (4zz̄)2

∣∣∣ψ̃V (L)(z, k)
∣∣∣2 , (B19)

1 = 2 ·
∫
dzd2k
16π3

{
(z2 + z̄2)k2 +m2} ∣∣∣ψ̃V (λ=±1)(z, k)

∣∣∣2 .
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We first turn to the 1S-state. Taken as input the ex-
perimentally well-determined quantities fρ andMρ, cf. Ta-
ble 2, we have for each helicity the set of implicit equations
(B16) and (B19) to determine ω1,λ and N1,λ.

For the 2S-state we exploit both the conditions of nor-
malization, (B19), and orthogonality to the 1S-state:

0 =
∫
dzd2k
16π3 (4zz̄)2 ψ̃†

1(L)(z, k)ψ̃2(L)(z, k)

0 =
∫
dzd2k
16π3

{
(z2 + z̄2)k2 +m2}

×ψ̃†
1(λ=±1)(z, k)ψ̃2(λ=±1)(z, k) . (B20)

If one would set ω2,λ = ω1,λ and determine N2,λ and Aλ,
the results for f2,λ from (B16) would not coincide for lon-
gitudinal and transverse polarization. However, it is possi-
ble to obtain agreement f2L = f2T , if one allows for slight
deviation of ω2L away from ω1L and ω2T away from ω1T .

We refer to Table 1, where we list the numerical values
of the so-determined parameters.

C Mixing angle, f2S-coupling

We make some remarks on Table 2 and the derivation of
the mixing angle θ from the branching ratios X1, X2 and
X3.

With our simple ansatz for the states ρ(1450) and
ρ(1700) as mixtures of a quark-antiquark 2S-state and
an inert rest, cf. (1), we have

fρ′ = cos θ f2S ,

fρ′′ = − sin θ f2S . (C1)

For the leptonic decay widths, see (A6), this means

Γρ′→e+e− =
4πα2

3
f2
2S

cos2 θ
Mρ′

,

Γρ′′→e+e− =
4πα2

3
f2
2S

sin2 θ

Mρ′′
. (C2)

On the other side we have from (12)

Γρ′→e+e− = Γ tot
ρ′ · X1(1 +X2)

X3

∣∣∣∣
ρ′
,

Γρ′′→e+e− = Γ tot
ρ′′ · X1(1 +X2)

X3

∣∣∣∣
ρ′′

. (C3)

Equating (C2) and (C3) we find

tan2 θ = Mρ′Γ tot
ρ′ · X1(1 +X2)

X3

∣∣∣∣
ρ′

/
Mρ′′Γ tot

ρ′′

· X1(1 +X2)
X3

∣∣∣∣
ρ′′

. (C4)

and

f2
2S =

3
4πα2

(
Mρ′Γ tot

ρ′ · X1(1 +X2)
X3

∣∣∣∣
ρ′

+Mρ′′Γ tot
ρ′′ · X1(1 +X2)

X3

∣∣∣∣
ρ′′

)
, (C5)

i.e. numerically

θ = 41.2◦ ,
f2S = −0.178 GeV , (C6)

where f2S is negative and the mixing angle is chosen in the
first quadrant to have the interference pattern in Fig. 1.

The coupling of the 2S-state to the electromagnetic
current apparently differs from the value in Table 1 which
comes from our model 2S-wave functions, cf. (10) and
(11), which we require to be normalized and orthogonal
on the 1S-states. With regard to the accuracy of the nu-
merical values of X1, X2 and X3, cf. Table 2 and [6], we
feel legitimized to base our calculation on the mixing an-
gle derived above and the coupling in Table 1, instead of
adjusting the wave function parameters in order to obtain
global agreement.
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